
3. Modules over PIDs



Finitely Generated Modules over Principal Ideal Domains



Main Theorem
Our goal is to prove the classification theorem for finitely generated
modules over PID’s, which asserts that every finitely generated
module over a PID is the direct sum of a free module and a finite
set of cyclic modules. Depending on how you describe the cyclic
modules you get different uniqueness statements.

Theorem: Let R be a principal ideal domain and let M be a finitely
generated R module. Then there is an integer k and elements
π1, . . . , πm in R such that π1|π2| · · · |πm such that

M = Rk ⊕ R/π1R ⊕ · · · ⊕ R/πmR.

Further, the integer k and the ideals πiR are uniquely determined by
M. The ideals πiR are called the invariant factors of M, and the
integer k is its rank.

Notice that if R = Z and M is finite then this is the fundamental
theorem of finite abelian groups with the πi being the invariant
factors.



Alternative formulation

Theorem: Let R be a PID and let M be a finitely generated R
module. Then there is an integer k and elements πi ∈ R such that
πi is a prime power and

M = Rk ⊕ R/π1R ⊕ · · · ⊕ R/πmR.

Again, the rank k and the prime power factors πi are unique (up to
ordering in this case).

The prime powers πi are called the elementary divisors of M.

If R = Z this is the fundamental theorem of finite abelian groups,
asserting that every such group is a finite product of cyclic groups
of prime power order, and that the prime powers are unique up to
ordering.



Strategy

Our strategy is to use ideas from linear algebra and approach the
problem algorithmically.

Suppose that M is generated by n elements e1, . . . , en over the PID
R. Then there is a surjective map

π : Rn → M

defined by π((r1, . . . , rn)) =
∑n

i=1 riei .

If f = (r1, . . . , rn) is in the kernel of π, then

n∑
i=1

riei = 0.



Relations

Because of this, elements of the kernel N of π are called relations
for the generators ei , and N is called the module of relations for M.

Since the relation module N of this map is a submodule of Rn, we
know from our discussion of finite generation is generated by (at
most) n elements f1, . . . , fn.

Let’s assume that our relation module has n generators f1, . . . , fn,
some of which might be zero.



The relation matrix

Expressing fj in terms of the ei yields an n × n matrix A = (aij)
defined by:

fj =
∑

ajiei

The columns of the matrix A express the generators fj of the kernel
of π in terms of the basis ei for Rn.

A is called a relation matrix for M.



The kernel as column space of the relation matrix

If, as we do in linear algebra, we express elements of Rn as column
vectors with R entries, we have a map

a : Rn → Rn

defined by a(v) = Av (matrix multiplication by A on a column
vector v with entries in R).
If the entries of v are (r1, . . . , rn) then a(v) =

∑n
i=1 ri fi and

therefore the image of the R-linear map a is N.



Standard form

We’ve reached a point where our module M is isomorphic to Rn/N
where N is generated by the columns of our matrix A.

We will show the following:

I N is free of rank m where m ≤ n.
I M has a basis y1, . . . , ym with the property that there are

elements b1, . . . , bm ∈ R such that b1|b2| · · · |bm and
b1y1, b2y2, . . . , bmym are a basis for N.

In terms of the relation matrix, we are saying that if we choose our
basis e1, . . . , en and f1, . . . , fn properly, then the corresponding
matrix A is diagonal with entries b1, b2, . . . , bm, 0, 0 . . . 0 and
b1|b2| · · · |bm.

We will do this by modifying the set of generators fj and ei so that,
at each stage, they continue to be sets of generators, but eventually
they have the desired relation.



The result from standard form
If we achieve the standard form, then we have the picture

Rn → M

where

(r1, . . . , rn) 7→
∑

riyi

and the kernel of this map is

N = b1y1 ⊕ b2y2 ⊕ · · · ⊕ bmym.

Therefore Rn/N = R/b1R ⊕ · · ·R/bmR ⊕ Rn−m which is the
structure we are trying to establish.

Alternatively, we can think of M as having generators e1, . . . , en and
relations biei = 0



Reduction Operations



Modifying the generators of M

Lemma: Suppose 1 ≤ t, s ≤ n with i 6= j . If we let elements
e∗i = ei for i 6= t, s, and also

e∗t = xet + yes

e∗s = zet + wes

Then e∗1 , . . . , e∗n are also generators of M.

Proof: Write

Since ei = e∗i for i 6= t, s and

et = we∗t − ye∗s
es = −ze∗t + xe∗s .

wee see that all of the ei are in the submodule of M generated by
the e∗i , and vice versa, so the e∗i are again a set of generators of M.



Row operations
Let’s examine the effect of this change on the relation matrix A. If

m = r1e1 + · · ·+ rnen.

then
m =

∑
i 6=t,s

rie∗i + (rtw − rsz)e∗r + (−yrt + xrs)e∗s .

This means that if we construct the relation matrix A∗ by writing

fj =
∑

a∗jie∗i

we see that A∗ is obtained from A by modifying rows t and s. If we
use subscripts to describe rows of matrices then

A∗t = wAt − zAs

A∗s = −yAt + xAs



Column Operations

More generally, we see that, given any relation matrix A, and
x , y , z ,w such that xw − yz = 1, modifying A by changing rows t
and s according to these formulas yields a new relation matrix
giving rise to an isomorphic module M.

A similar line of argument shows that if we make the same type of
modification to the generators fj for the relations, then we modify
the relation matrix A by column operations of the same type.



Outline of proof of standard form



Initial remarks

Now suppose we are given an n × n matrix A with entries in a PID
R. There is a sequence of row and column operations that reduces
it to standard form, so that the reduced matrix is diagonal, the first
k diagonal elements are nonzero and the remaining n − k are zero,
and the nonzero diagonal elements satisfy

a11|a22| · · · |akk



Main Steps

1. If A = 0, we’re done, otherwise swap rows and columns so a11
is not zero.



Clear out the first row

2. If all a1i for i > 1 are divisible by a11, replace each column Aj

where a1j is not zero by Aj − a11/a1jA1. Otherwise, for each
column j = 2, . . . , n where a1j is not zero, use the fact that R
is a PID to find a generator d for the ideal (a11, a1j) for each
column and write a11x − a1jy = d . Then make a column
operation using this x and y with w = a11/d and z = a1j/d to
obtain a matrix with a11 = d and a1j = 0. At the end of this
step, the only nonzero entry in the first row is a11.



Clear out the first column

3. If all ai1 for i > 1 are divisible by a11, replace each row Aj with
Aj − aj1/a11A1. Now you’ve got a matrix so that the first row
and column are all zero, except for a11. Go to step 4.
Otherwise, use the fact that R is a PID to find a generator
d = a11x − aj1y and make a row operation using this x and y
with w = a11/d and z = aj1/d to obtain a matrix with a11 = d
and aj1 = 0. At the end of this process, you’ve got a matrix so
that a11 is the only nonzero entry in the first column; but you
may have messed up the first row. So go back to step 2.



Check divisibility; descend to submatrix

4. At this point the first row and column of A are zero except for
a11. If a11 divides every entry in the lower right
(n − 1)× (n − 1) submatrix, then apply this algorithm to that
submatrix and continue. If a11 does NOT divide every entry in
lower submatrix, find a row Aj containing an element not
divisible by a11 and replace the first row A1 by A1 + Aj . Now
go back to step 2 and continue.



Remarks on the algorithm

There are two things to consider in this algorithm.

First, the loop through steps 2 and 3 must eventually terminate
because each time you go through it, you replace a11 by a divisor of
a11. This cannot continue indefinitely, so eventually you will reach
step 4.

Second, if a11 divides everything in the lower submatrix, then by
induction, once that matrix is in standard form, the whole matrix
will be in standard form. If a11 does not divide everything in the
lower submatrix, then the return to step 2 will replace a11 by a
proper divisor of a11 and again, that can’t continue indefinitely.



Constructive for Euclidean rings

The only non-constructive part of this “algorithm” is that we invoke
the PID property of R so that, given a, b we can find ax + by = d
where d is the gcd of a and b. If R is Euclidean, this can be done
constructively, and so this algorithm can be carried out in practice.



Uniqueness



Uniqueness in DF

Proof of uniqueness is given in DF, Section 12.1 Theorem 9.
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