
2. Modules (continued)



More on modules



Sums of modules

Suppose that R is a ring and M is an R-module. Let N1, . . . , Nk be
submodules of M. Then the sum N1 + . . . + Nk is the collection

N1 + . . . + Nk = {n1 + · · ·+ nk : ni ∈ Ni}

It is a submodule of M and the smallest submodule containing all
the Ni .

One can also consider infinite collections of submodules:

∑
i∈I

Ni = {
∑
j∈J

nj : nj ∈ Nj , J ⊂ I finite }



Generating submodules (compare vector spaces)

Suppose A ⊂ M. Then the submodule RA of M generated by A is
the smallest submodule of M containing A. In practice it is the
collection

RA = {r1a1+· · ·+rkak : r1, . . . , rk ∈ R, a1, . . . , ak ∈ A, k ∈ Z, k ≥ 0}

In linear algebra, we would say that RA is the submodule of M that
is spanned by A and this terminology can be used here as well.

We can also say that RA is the set of (finite) R-linear combinations
of elements of A.



Generating sets - an example

Suppose that V is a Q-vector space of dimension n and w1, . . . , wk
are a set of vectors in V .

Since V is also a Z module (by “restriction of scalars”) we can
consider the sub-Z-module of V generated by the wi . This is all
Z-linear combinations of the wi .

For example if V = Q2 and A = {w1, w2} are the standard basis
elements then ZA is the subset of V of vectors with integer
coefficients in the standard basis.



Finite generation

Definition: An R-module M is finitely generated if there is a finite
subset A ⊂ M such that RA = M.

Note that Q is finitely generated as a Q-module (in fact it’s
generated by one element) but not as a Z-module.

For vector spaces, finitely generated means finite dimensional. A
generating set is the same as a spanning set.



Comparison with vector spaces

A set m1, . . . , mk in an R-module M is linearly independent if,
whenever

∑
rimi = 0, all ri = 0.

For vector spaces, a maximal linearly independent set (meaning a
linearly independent set which becomes dependent when any
nonzero element is added to it) automatically spans the vector
space, and we call this a basis.

For modules, this fails. Consider Z2 and let e1 = [2, 0] and
e2 = [0, 2]. If e = [a, b] then

2e − ae1 − be2 = 0

so e1, e2 is a maximal linearly independent set. But they don’t
generate all of Z2.



Cyclic modules

Definition: An R module M is cyclic if it is generated by one
element: M = Ra for some a ∈ M.

I Cyclic groups are cyclic Z-modules.
I If R is a ring with unity and I is a left ideal, then R/I is a

cyclic R-module generated by 1 + I.
I If R is a ring with unity, an ideal I is a cyclic module if and

only if it is a principal ideal.
I If R = Mn(F ) for a field F and M = F n is the space of column

vectors viewed as an R-module, then M is cyclic.

If R = Z[i ], then (1 + i)R is a cyclic module for R generated by
(1 + i). But if we view (1 + i)R as a Z-module inside the Z-module
R = Z + Zi then (1 + i)R is generated over Z by 1 + i and
(1 + i)i = i − 1; it is not cyclic as a Z-module.



Characterization of cyclic modules

Proposition: Let M be a cyclic R-module. Then M is isomorphic
to R/I where I is a left ideal of R.

Proof: Let m ∈ M generate M. Consider the map f : R → M
defined by f (r) = rm. This is a module homomorphism since

f (r1r2) = r1r2m = r1(r2m) = r1f (r2c).

(Remember that we are thinking of R here as an R-module, not a
ring.)



Characterization of cyclic modules cont’d

The kernel of the map f (r) = rm is the set I = {r ∈ R : rm = 0}.

This is a left ideal since if rm = 0 then srm = 0 for all s ∈ R.

Since M is cyclic, the map f is surjective.

Therefore by the isomorphism theorem M is isomorphic to R/I.



More on cyclic modules

Recall that a module M for F [x ] is the same as an F -vector space
V together with a linear map T : V → V .

If M is cyclic then there is an m ∈ M so that every m′ ∈ M is given
by p(x)m for some p(x) ∈ F [x ].

This means that that there is a vector v ∈ V so that every vector
v ′ ∈ V is of the form p(T )v . In other words, the set
v , Tv , T 2v , . . . , T nv , . . . spans V .

If V = F 2 and T satisfies Te1 = 0 and Te2 = e2 then V is not
cyclic.

If Te1 = 0 and Te2 = e1 then V is cyclic and generated by e2. Also
T 2e2 = 0 and so as an R-module V is isomorphic to F [x ]/(x2).



Direct Sums and Direct Products



Direct Products (definition)

Suppose that M1, . . . , Mk are R modules. The direct product
M1 × · · · ×Mk of the Mi is the set of “vectors” (m1, . . . , mk) with
mi ∈ Mi . Addition and multiplication by R are done componentwise.



Internal direct sums

Suppose that M is an R-module and N1, . . . , Nk are submodules of
M. There is a module homomorphism

N1 × · · · × Nk → N1 + · · ·Nk ⊂ M

defined by sending (n1, . . . , nk)→ n1 + · · · nk .



Internal direct sums (continued)

Definition: The sum map above is an isomorphism if and only if
either of the following two conditions are satisfied:

I Nj ∩ (N1 + · · ·Nj−1 + Nj+1 + · · ·Nk) = 0 for all j = 1, 2, . . . , k
I Any x ∈ N1 + N2 + . . . + Nk can be written uniquely as a sum

x = n1 + n2 + . . . + nk with ni ∈ Ni .

If M is isomorphic to N1 × · · · × Nk via the sum map, we say that

M = N1 ⊕ N2 ⊕ · · · ⊕ Nk

and say that M is the internal direct sum of the Ni .



Direct Sums vs Direct Products



Definitions

Suppose that I is a set and Mi is an R-module for each i ∈ I.

The direct product
∏

I Mi is the collection of all functions
f : I → ∪i∈IMi such that f (i) ∈ Mi . It is an R-module:
(f + g)(i) = f (i) + g(i) and (rf )(i) = r(f (i)).

The direct sum ⊕IMi is the submodule of
∏

I Mi consistsing of
functions f with the additional property that there is a finite subset
J ⊂ I such that f (i) = 0 unless i ∈ J .

Notice that if I is finite then these two things are the same.



Countable sums and products

Suppose that I = N, the natural numbers, and Mi is a family of
R-modules indexed by I. Then:

I
∏

i∈I Mi consists of sequences (m1, m2, . . . , mk , . . .) where
mi ∈ Mi .

I ⊕i∈IMi consists of sequences (m1, m2, . . . , mk , . . .) where
mi ∈ Mi and there is an N such that mi = 0 for all i ≥ N.

Notice that, if each Mi is countable, then so is ⊕i∈IMi , but
∏

i∈I Mi
is not.



Free Modules



Definition

Definition: A module M is free on a set A of generators if, for
every nonzero element m of M, there are unique nonzero r1, . . . , rk
in R and elements a1, . . . , ak in A such that

m = r1a1 + · · ·+ rkak .

Such a set A is called a basis of M, so a module M is free if it has a
basis.



Examples and non-examples

If A = {a1, . . . , an} is finite, then M is free on A if the map

⊕n
i=1R → M

defined by (r1, . . . , rn) 7→ r1a1 + · · ·+ rnan is an isomorphism. So
basically M is free on a set A with n elements if and only if it is
isomorphic to Rn.

If R = Z, then M = Z/mZ⊕ Z/mZ is not free on (1, 0) and (0, 1).
Every m ∈ M is a linear combination r1(1, 0) + r2(0, 1) for
r1, r2 ∈ Z, but r1 and r2 are not uniquely determined. In fact M is
not free on any set of generators.

Any vector space over F is a free F -module.



Rings with nonprincipal ideals.

A principal ideal in a (commutative) ring is a free module, but a
non-principal ideal is not. Consider
I = (2, 1 +

√
−5) ⊂ R = Z[

√
−5]. Choose any two elements of this

ideal, say x and y . Then −y · x + x · y = 0 which shows that the
map R ⊕ R → I is not injective. On the other hand we know that
the ideal is not principal.



Mapping property

Let A be a set. There exists a module F (A), called the free module
on A, which contains A as a subset.
It satisfies the following property.

Let M be any module and let f : A→ M be any map of sets. Then
there is a unique module homomorphism Φ : F (A)→ M such that
the following diagram commutes:

A ⊂ //

f

!!

F (A)

Φ
��

M



Examples of mapping property

I If V is a vector space and B is a basis, then V is free on B. A
linear map from V →W is determined by where you send B.
In this situation, f : B →W is the map of sets sending the
basis of V to a subset of W , and Φ is the resulting linear map.

I If A is any set, then F (A) is the R-module of “formal linear
combinations of elements of A”: the set of sums

∑
riai over

finite collections {a1, . . . , an} of elements of A.

I Alternatively it is the set of functions f : A→ R that are zero
for all but a finite subset of A with pointwise addition and
scalar multiplication.



Uniqueness

Any two free modules on the same set are isomorphic via the
module map induced by the identity map on A.



Rank



Torsion Definition

Suppose that R is a ring with unity.

Definition: Let M be an R-module. An element m ∈ M is a
torsion element if rm = 0 for some nonzero r ∈ R. The set of
torsion elements in M is called Tor(M).

I Any finite abelian group is a torsion Z-module.
I Any cyclic R-module is torsion.
I Any finite dimensional vector space V over a field F with a

linear map T : V → V is a torsion F [x ]-module.

Lemma: If R is an integral domain and M is an R-module, then
the set of torsion elements is a submodule.

Proof: If m1 and m2 are torsion, r1m1 = 0 and r2m2 = 0, with
both r1 and r2 nonzero, then r1r2(m1 + m2) = 0 and
r1r2(m1m2) = 0, and r1r2 is nonzero since R is an integral domain.



Torsion-free modules

If R is an integral domain, an R-module M is called torsion-free if
Tor(M) = 0.

Any free module is torsion-free, but the converse is false. For
example, non-principal ideals in integral domains are not free. This
follows from the following lemma.

Lemma: An ideal of R is free if and only if it is principal.

Proof: R is a free module of rank 1, so a submodule has rank at
most 1; if it has rank 1, it is a principal ideal.
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