
1. Modules



Modules: Basics



How to think of modules

I Modules are to rings as vector spaces are to fields.
I Modules are to rings as sets with group actions are to groups.



Definition of (left) modules

Definition: Let R be a ring (for now, not necessarily commutative
and not necessarily having a unit). A left R-module is an abelian
group M together with a map R ×M → M (written (r ,m) 7→ rm)
such that:

I r(m1 + m2) = rm1 + rm2
I (r1 + r2)m = r1m + r2m
I r1(r2m) = (r1r2)m

If R has a unit element 1, we also require 1m = m for all m ∈ M.



Right modules

A right module is defined by a map M × R → M and written
(m, r) 7→ mr and satisfying the property

(mr1)r2 = m(r1r2).

If R is not commutative, these really are different, since for a left
module:

I r1r2 acts by "first r2, then r1

while for a right module

I r1r2 acts by “first r1, then r2.”



Left and Right modules

If R is commutative, and M is a left R-module, then we can define
a right R module M ′ with the same underlying abelian group M and
by defining m′r = (rm)′. This works because

(m′r1)r2 = (r1m)′r2 = (r2(r1m))′ = ((r2r1)m)′ = ((r1r2)m)′ = m′(r1r2)



Remarks
Vector spaces
If R is a field, then a left (or right) R-module is the same as a
vector space.

Another definition
If M is an abelian group, and R is a ring, then a left R-module
structure on M is the same as a ring map

R → End(M).

If φr is the endomorphism associated to r ∈ R, then rm = φr (m).
The associativity comes from defining the ring structure on

End(M)

as the usual composition of functions:

φr1r2 = φr1 ◦ φr2 .



Submodules

Definition: If M is a left R-module, then a submodule N of M is a
subgroup with the property that, if n ∈ N, then rn ∈ N for all r ∈ R.

Observation: A ring R is a left module over itself by ring
multiplication. The (left) ideals of R are exactly the left submodules
of R.



Essential examples



Rings as modules over themselves

I Every ring R is a left module over itself. The submodules of R
are the left ideals.

I R is also a right module over itself, with the right ideals being
the right submodules.

If F is a field and n > 1, let R = Mn(F ) be the n × n matrix ring
over F . The matrices with arbitrary first column and zeros
elsewhere form a left ideal J and therefore a left submodule of R as
left R-module. But J is not a right R-submodule.

A field F is a one-dimensional vector space over itself, and a
commutative ring R is a module (left and right) over itself with the
ideals of R being the submodules.



Free modules

Let R be a ring with unity and let n ≥ 1 be a positive integer. Then

Rn = {(r1, . . . , rn) : ri ∈ R for i = 1, . . . , n}

is an R module with componentwise addition and multiplication
given by r(r1, . . . , rn) = (rr1, . . . , rrn).

This is called the free R-module of rank n.



Free modules and vector spaces

I If R is a field, the free R-module of rank n is an n-dimensional
vector space.

I The submodules of a finite dimensional vector space are all
subspaces which are copies of Rk for k ≤ n.

I For more general R the picture is more complicated. Let
R = Z and M = Z2. Then:
I {(n, 0) : n ∈ Z} is a submodule of M which “looks like” a

subspace.
I 2M = {(a, b) : a, b ∈ 2Z} is a submodule of M which does not.



Change of rings (restriction of scalars)

I An abelian group M may be an R module for different rings R.
For example:
I Q is a module over Q, where it is a one dimensional vector

space and its only Q-submodules are 0 and itself.
I Q is a module over Z, and it has many Z-submodules, such as

Z[1/2].

More generally, if R ⊂ S is a subring, and M is an S-module, then it
is an R-module. This is called restriction of scalars.



Z-modules are the same as abelian groups

Let M be an abelian group. Then it is automatically a Z-module
where we define

nx =
n︷ ︸︸ ︷

x + x + · · ·+ x .

Furthermore, given any Z-module, it must be the case that

nx = (
n︷ ︸︸ ︷

1 + 1 + · · ·+ 1)x =
n︷ ︸︸ ︷

x + x + · · ·+ x .

(Note: this is why we require 1x = x when R is a ring with unity in
the module axioms).

Further, submodules of M (as Z-module) are just the subgroups of
M (as abelian group).



Change of rings (quotients)

Suppose that M is a left R module and I ⊂ R is a two-sided ideal
with the property that, for all y ∈ I, and all x ∈ M, we have yx = 0.
In this case we say that I annihilates M or that IM = 0.

With this hypothesis, we may view M as an R/I module by defining
(r + I)m = rm for any coset representative r + I ∈ R/I. This is
well-defined since two different coset representatives r , r ′ satisfy
r ′ = r + i for some i ∈ I and therefore r ′m = (r + i)m = rm since
im = 0.

If M is an abelian group and m ∈ Z is a positive integer such that
mM = 0, then M can be viewed as a module over Z/mZ by this
process.

This operation is a special case of a general operation called base
change or extension of scalars that we will study in more detail later.



Modules over F [x ]



Basic construction

Let F be a field, let V be a vector space over F , and let
T : V → V be an F -linear transformation. Define a homomorphism

F [x ]→ End(V )

by sending

xk 7→ T k =
n︷ ︸︸ ︷

T ◦ T ◦ · · · ◦ T .

This construction makes V into a module for F [x ] which depends
on the choice of the linear transformation T .



Polynomials and linear transformations

Let V = F 2 and let T be the linear transformation given by the
matrix

T =
(
0 1
1 1

)

If e0 and e1 are the standard basis elements of F 2 then

Te0 = e1

T 2e0 = Te1 = e0 + e1 = e0 + Te0 = (1 + T )e0



Polynomials and linear transformations continued

Therefore (T 2 − T − 1)e0 = 0 and

(T 2 − T − 1)e1 = (T 2 − T − 1)Te0 = T (T 2 − T − 1)e0 = 0

so the polynomial x2 − x − 1 is in the kernel of the map from
F [x ]→ End(V ).

By the base change construction above this means that V can be
viewed as a module over F [x ]/(x2 − x − 1).



Characterization of F [x ] modules
We saw above that, given an F -vector space V with a linear
transformation T , we get an F [x ] module where x acts on V
through T .

Conversely, suppose that M is an module over F [x ]. Then M is an
F vector space (via the restriction of scalars from F [x ] to F ).
Furthermore, the element x ∈ F [x ] acts on M as an F -linear
transformation because that’s what the module axioms amount to.

Therefore there is an equivalence between

{F [x ]−modules}
KS

��
{vector spaces V over F with a given linear map T : V → V }



Submodules of F [x ] modules

In the correspondence above, a submodule of an F [x ] module M
corresponds to a subspace W ⊂ V that is preserved by T , meaning
TW ⊂W .

Thus, not all subspaces of V correspond to submodules.

In the example given earlier, the only T -stable proper subspace of V
is the zero subspace.

If we consider instead the linear map on F 2 satisfying Ue0 = 0 and
Ue1 = e0, then the one dimensional subspace spanned by e0 is
U-stable and F 2 viewed as an F [x ] module via U has a submodule
corresponding to that subspace.



Checking the submodule property

Proposition: A subset N of a left R-module M is a submodule if it
is nonempty and, for all x , y ∈ N and r ∈ R, we have x + ry ∈ N.
Alternatively, if N is a subgroup of the abelian group M and
rN ⊂ N for all r ∈ R then N is a submodule.



Algebras

Definition: Let R be a commutative ring with unity. An R-algebra
is a (not necessarily commutative) ring S with a ring homomorphism
f : R → S carrying 1R to 1S such that f (R) is in the center of S.

The polynomial ring F [x ] is an F -algebra, as is the matrix ring
Mn(F ) where the homomorphism f : F → Mn(F ) embeds F as the
diagonal matrices. More generally, any F -algebra A, where F is a
field, contains F in its center and the identites of A and F are the
same.

The ring Z/pZ is a Z-algebra. In fact any ring S with 1 is a Z
algebra by the map sending n ∈ Z to n1S .

The ring Q[x ] is a Z[x ] algebra.

We typically omit the explicit map f and just think of R as
“contained in” A; this can be misleading since f doesn’t need to be
injective, but it works in practice.



Algebra morphisms

Definition: A map of R-algebras f : A→ B is a ring
homomorphism that is R-linear in the sense that f (ra) = rf (a) for
all r ∈ R and a ∈ A.

Any homomorphism of rings with unity is a Z-algebra morphism.



Modules Homomorphisms, Quotient Modules, and Mapping
Properties



Module homomorphisms

Definition: Let R be a ring and let M and N be (left) R-modules.
A function f : M → N is an R-module homomorphism if:

I it is a homomorphism between the abelian group structures on
M and N

I it is R-linear, meaning f (rm) = rf (m) for all r ∈ R.

Note that, if R is a field, then M and N are vector spaces and an
R-module homomorphism is just a linear map.

A module isomorphism is a bijective homomorphism.

We let HomR(M,N) denote the set of R-module homomorphisms
from M to N.



Kernels and images

Let R be a ring and let M and N be R-modules. Let f : M → N be
a homomorphism.

I Let ker(f ) = {m ∈ M : f (m) = 0} (the kernel of f ). This is a
submodule of M.

I Let f (M) ⊂ N be the image of f . Then f (M) is a submodule
of N.



Quotient modules
Let M be an R module and let N ⊂ M be a submodule.

Definition: Let M/N be the quotient abelian group. Then M/N is
an R-module where R acts on cosets by

r(x + N) = rx + N.

This is called the quotient module of M by N.

The R-module structure is well defined because if x + N = y + N,
then x = y + n for some n ∈ N, and rx = ry + rn. Since N is a
submodule, rn ∈ N so rx + N = ry + N.

Notice that N can be any submodule, there is no “normality”
condition like for groups.

There is always a “projection” homomorphism π : M → M/N
defined by π(m) = m + N which has kernel N.



Sums of modules

If A and B are submodules of a module M, then A + B is the
smallest submodule of M containing both A and B. Alternatively it
is:

A + B = {a + b : a ∈ A, b ∈ B}



Mapping Properties

Let M, N, and K be R modules, and let f : M → K be a
homomorphism with N ⊂ ker(f ). Then there is a unique
homomorphism f : M/N → K making this diagram commutative:

M
f

""
π
��

M/N
f
// K



Isomorphism theorems

The isomorphism theorems for abelian groups give isomorphism
theorems for modules.

I If f : M → K is a homomorphism, then the map f gives an
isomorphism between M/ ker(f ) and f (M) ⊂ K .

I (M + N)/N is isomorphic to M/(M ∩ N).
I (M/A)/(N/A) is isomorphic to M/N.
I There is a bijection between the lattice of submodules of M/N

and submodules of M containing N given by K ↔ K/N.

The proofs of all of these facts are found by checking that the group
isomorphisms respect the action of the ring R.



HomR(M, N)

The set HomR(M,N) is an abelian group:
(f + g)(m) = f (m) + g(m) and the zero map is the identity.

If R is commutative then HomR(M,N) is an R-module if we set
(rf ) to be the function (rf )(m) = r(f (m)) = f (rm). We need rf to
be a module homomorphism, which means we need:

(rf )(sm) = s(rf )(m).

This works out ok if R is commutative since

(rf )(sm) = f (rsm) = f (srm) = s(f (rm)) = s((rf )(m))

but it fails if R is not commutative.



HomR(M, M)

The set HomR(M,M) is a ring with multiplication given by
composition. The identity map gives an identity for this ring.

If R is commutative then, given r ∈ R, we have an element
φr ∈ HomR(M,M) given by φr (m) = rm. This is a homomorphism
because

φr (sm) = rsm = srm = sφr (m)

but this fails in general if R is not commutative. Thus, if R is
commutative, HomR(M,M) is an R-algebra.



More on HomR(M, M)

If M = Rn, then HomR(M,M) is the ring of n × n matrices with
entries from R.
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