Euclid's algorithm

An important, non-trivial example: Euclid's Algorithm

Theorem (Book Proposition 7.1): If a and b are natural numbers, then there exist integers k and l for which

$$gcd(a,b) = ak + bl.$$

Comments:

- Iogical structure of this statement is "For all a and b in N there exists k and l in Z such that gcd(a, b) = ak + bl."
- Note that k and l will depend on a and b.

Hidden part	$\alpha = 7, b = 3$	g(d(a,b) = 1
	$(1) = \frac{7K + 3l}{1}$	K=1, l = -2
	a = 17 b = 5	17·2+7·5 =1 K=2 l=7
	a- 15 6-9	gcd = 3
	3=2.15+9((-3)
1 - 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	7k+3d -1 0 1 78 -6 1 8 -3 4 11 -3 4 11 -1 0 12 -1 6	

~

Hidden part continued

-48

~24

∫K |

-2

 \sim]

0

 $lSK + \mathcal{G}L = \mathcal{G}(SK + \mathcal{G}L)$ 2(3) -2 -1. 1 Ô (-33)12 -3 -18 6 (on jecture: 15 Smallest positive Value of the form aktbl as k, e Vary is the gcd(a, b). 0 24 9 33 18

A Lemma

Lemma: Let *a* and *b* be natural numbers. The set $A = \{ax + by : x, y \in \mathbb{Z}\}$ is *closed* under addition, meaning the sum (and difference) of any two elements of *A* is an element of *A*.

Proof,
$$t = a x_0 + b y_0$$
, $x_0, y_0, x_1, y_1 \in \mathbb{Z}$
 $S = a x_1 + b y_1$
 $t + s = a(x_0 + x_1) + b(y_0 + y_1)$
 $t + s \in A$

Proof from the book.

Proposition 7.1: If $a, b \in \mathbb{N}$, then there exist integers k and l so that

$$gcd(a, b) = ak + bI.$$

Proof: The set $A = \{ax + by : x, y \in \mathbb{Z}\}$ contains positive and negative integers, as well as 0. Let *d* be the *smallest positive* <u>element of A</u>. Since $d \in A$, there are values of *x* and *y* so that d = ax + by. Call one set of these values <u>k</u> and <u>l</u>, so that d = ak + bl.

proof, cont'd.

Step 1. *d* is a common divisor of *a* and *b*.

Proof: Find q and r so that $\underline{a} = q\underline{d} + \underline{r}$ and $0 \le r < d$. Then qd is in A and a is in A, so $r = \underline{a} - qd$ is in A, since A is closed under addition. action: action = a - qd is in A, since A is closed under dctored = dctored =

Therefore $\underline{a = qd}$ and so \underline{d} is a divisor of \underline{a} . The same argument works for b.

proof, cont'd

Step 2: $\underline{d} = ax + \underline{kl}$ is the *greatest* common divisor of *a* and *b*. **Proof:** Let $g \in \mathbb{N}$ be any common divisor of *a* and *b*. Then a = ug and b = vg for natural numbers *u* and *v*. Therefore

$$d = ugk + vgl = g(uk + vl).$$

As a result, g is a divisor of d and so $d \ge g$. Therefore d is the greatest common divisor.

Notes

- Notice that we in fact proved that every common divisor of a and b is a divisor of gcd(a, b).
- Implicit in the proof is an *algorithm* for finding gcd(a, b), as well as k and l so that gcd(a, b) = ak + bl.