
Euclid’s algorithm

 



An important, non-trivial example: Euclid’s Algorithm

Theorem (Book Proposition 7.1): If a and b are natural
numbers, then there exist integers k and l for which

gcd(a, b) = ak + bl .

Comments:
I logical structure of this statement is “For all a and b in N there

exists k and l in Z such that gcd(a, b) = ak + bl .”
I Note that k and l will depend on a and b.
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A Lemma

Lemma: Let a and b be natural numbers. The set
A = {ax + by : x , y œ Z} is closed under addition, meaning the sum
(and di�erence) of any two elements of A is an element of A.
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Proof from the book.

Proposition 7.1: If a, b œ N, then there exist integers k and l so
that

gcd(a, b) = ak + bl .

Proof: The set A = {ax + by : x , y œ Z} contains positive and
negative integers, as well as 0. Let d be the smallest positive
element of A. Since d œ A, there are values of x and y so that
d = ax + by . Call one set of these values k and l , so that
d = ak + bl .



proof, cont’d.

Step 1. d is a common divisor of a and b.
Proof: Find q and r so that a = qd + r and 0 Æ r < d . Then qd is
in A and a is in A, so r = a ≠ qd is in A, since A is closed under
addition.
Since 0 Æ r < d , and d is the smallest positive element of A, we
must have r = 0.
Therefore a = qd and so d is a divisor of a. The same argument
works for b.
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proof, cont’d

Step 2: d = ax + kl is the greatest common divisor of a and b.
Proof: Let g œ N be any common divisor of a and b.
Then a = ug and b = vg for natural numbers u and v .
Therefore

d = ugk + vgl = g(uk + vl).

As a result, g is a divisor of d and so d Ø g . Therefore d is the
greatest common divisor.
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Notes

I Notice that we in fact proved that every common divisor of a
and b is a divisor of gcd(a, b).

I Implicit in the proof is an algorithm for finding gcd(a, b), as
well as k and l so that gcd(a, b) = ak + bl .


